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Simulated annealing for topological solitons
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The search for solutions of field theories allowing for topological solitons requires that we find the field
configuration with the lowest energy in a given sector of topological charge. The standard approach is based on
the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an
alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We
have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one
dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We
describe in detail the implementation of the simulated annealing algorithm, present our results and get inde-
pendent confirmation of the studies which have used standard minimization techniques.

PACS number~s!: 02.70.2c, 12.39.Dc
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I. INTRODUCTION

Solitons have played an ever increasing role in the
scription of physical phenomena since their discovery
Russell@1# in 1834. Generally speaking, a soliton is a sta
localized solution of a nonlinear partial differential equati
which propagates at a constant speed and stays loca
even after an interaction with another soliton~see Ref.@2# for
an introduction to solitons!. They are particlelike extende
objects. Well-known soliton models in one dimension~1D!
are the Korteweg–de Vries~KdV! and the sine-Gordon mod
els. The stability of the KdV soliton is due to the dynamic
balance between the nonlinear and the dispersive terms in
KdV equation. This differential equation belongs to the cla
of integrable models that can be solved exactly. The s
Gordon model is also integrable and the stability of its so
ton is also based on the balance between nonlinearity
dispersion. However, it also belongs to the wider class
models whose solitons are stable by conservation of a to
logical charge or winding number, as discussed in Sec. IV
In topology, the field is interpreted as a mapping from phy
cal space to field space and a field configuration with giv
topological charge cannot dynamically change into a fi
configuration with a different charge. In this paper, when
discuss topological solitons, we shall consider only the fi
configuration with lowest energy in a nonzero topologic
charge sector.

Topological solitons arise in many areas of physics: fi
theory ~e.g., vortices, monopoles, and instantons, as
cussed in Ref.@3#, and Hopf solitons@4,5#!, condensed mat
ter ~e.g., baby Skyrmions@6#!, nuclear physics~Skyrmions,
see Ref.@7#!, cosmology~e.g., cosmic strings@8#!, and string
theory or M-theory~e.g., Olive-Montonen duality@9#!. They
possess many interesting properties. The conservation o
pological charge can be used to model particle conserva
and annihilation: the number of solitons is conserved a
two solitons with opposite charge can annihilate. Since
stability of solitons is assured by topology, there exists c
siderable freedom in constructing appropriate Lagrangi
PRE 621063-651X/2000/62~3!/4333~14!/$15.00
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for physical systems. The common constraint of Lorentz
variance is easily imposed by using covariant terms. Ho
ever, the use of topological models has a major disadvant
The models are generally not integrable and few analyt
techniques are available~only Ansätze, topological bounds,
etc.!. It is therefore crucial to study the models using reliab
and efficient numerical methods.

We are looking for the~static! lowest-energy field con-
figuration in a given topological sector. Thus, we need
minimize the energy functionalE of the field theory, the
integral of an energy densityE over a manifoldM:

E@C#5E
M

dnx E„x, f ~x!, f 8~x!…, ~1!

wheref (x) is a field configurationC. The topology typically
imposes some boundary conditionsf (]M ). We are search-
ing for the functionf min(x) that gives the lowest value forE.
There are two possible approaches: to solve the Eu
Lagrange equation of the functionalE with respect to the
function f (x) or to minimizeE through some other means

Hitherto only the first approach, via the Euler-Lagran
equation, has been used with topological systems. We s
review the standard numerical techniques that apply shoo
or relaxation methods and discuss their reliability and eas
use. In this paper, we show how to minimize the ene
functional directly by using the simulated annealing~SA!
algorithm, as proposed in Refs.@10,11#. SA is based on the
fact that a solid which is slowly cooled down, assuring th
mal equilibrium at each temperature, reaches its gro
state. The SA algorithm describes the cooling process an
Metropolis subalgorithm brings a system into thermal eq
librium. SA has been applied to minimization problems
such diverse areas as combinatorial optimization~such as the
traveling salesman problem!, circuit design, finance, physics
and military warfare: see Refs.@12,13#, Sec. 10.9. We give a
detailed introduction to SA and describe our implemen
tions. We find the topological solitons of the sine-Gord
model in 1D, the baby Skyrme model in 2D, and the nucl
4333 ©2000 The American Physical Society
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4334 PRE 62MARK HALE, OLIVER SCHWINDT, AND TOM WEIDIG
Skyrme model in 3D and compare our results to those
tained using standard minimization techniques.

II. MINIMIZATION VIA THE EULER-LAGRANGE
EQUATION

The standard procedure uses the Euler-Lagrange equ
resulting from the variation of the functionalE with respect
to the function f (x) to find the minimal energy solution
f min(x). In the 1D case, for example, the problem is a tw
point boundary value problem satisfying the different
equation

d

dx S dE
d f8D2

dE
d f

50. ~2!

It is a second order ordinary differential equation~ODE!, and
a partial differential equation in two or more dimension
which is equivalent to a set of first order ODEs. Letf (a) and
f (b) represent the boundary conditions a field configurat
has to satisfy over the interval@a,b#. There are two standar
approaches: the shooting and the relaxation methods~as dis-
cussed in@13#, Chap. 17!.

A. The shooting method

The shooting method is usually based on integration fr
one boundary to the other. The value of the function at
point x5a is taken to bef (a) and an initial guessa for its
derivative is made. A numerical integration, for examp
with a Runge-Kutta method, up to the other boundary po
x5b then gives an estimatef a(b) for f at b. This value is
compared to the known boundary valuef (b) and a is ad-
justed to matchf a(b) more closely tof (b). This procedure
is repeated until the desired accuracy is achieved. The sh
ing method is unrivaled in speed and accuracy, but ap
cable only in one dimension.

B. Relaxation methods

Gauss-Seidel over-relaxation~SOR! is commonly used to
solve the boundary problem directly. A time-dependent d
ferential equation, a diffusion equation, is constructed ou
the 1D ODE~2!,

d f~x,t !

dt
5v dx2F d

dx S dE
d f8D2

dE
d f G . ~3!

If the system reaches equilibrium, i.e.,d f /dt50, this con-
figuration is a solution to Eq.~2!. One starts out with a con
figuration satisfying the boundary conditions. The coefficie
v of the leading term, which has the formd2f /dx2, is di-
mensionless and determines the speed of convergence
choice of integration method is not very sensitive; we c
use Euler integration, the Runge-Kutta method, or the Cra
Nicholson method. The standard SOR uses the Euler me
with updated information from already computed field valu
at lattice points and ensures better convergence. It is pos
to neglect the derivative of the energy functional with resp
to the derivative off, i.e., we consider only the change wi
respect to the degree of freedom itself; see, e.g.,@4#.
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In many cases one also studies the time evolution of
models. Computer codes developed for this purpose ca
adapted to find minimal energy solutions by adding a dam
ing term to the equation of motion. For example, in@14#, two
baby Skyrmions are put in an attractive configuration a
form an oscillating bound state. As the system has b
made dissipative, the energy of the system decreases
time until a minimum is reached. Thus, finding a minim
energy solution is translated into a damped time evoluti
The same effect can often be reached by working with
finite box and absorbing any outward propagating radiat
on the boundaries.

Relaxation techniques are well documented and ap
cable in any dimension~see Ref.@13#!. The SOR method has
theoretically the best rate of convergence but might be
than optimal since the best choice ofv can rarely be deter-
mined for a nonlinear system and must be made by trial
error. Using damping in a time-evolution problem is conv
nient, but one first has to set up the time-evolution code. I
impossible to estimate the error on an integration step
one needs to monitor conserved quantities. This is espec
important if, as is often the case, the field has to satisf
constraint. Furthermore, if the initial configuration is f
from the global minimum, we might end up in a local min
mum. Moreover, the derivation of the corresponding Eul
Lagrange equation becomes increasingly difficult wh
higher-order terms are added to the Lagrangian or w
complicated constraints on the field space are present.

We have come to the conclusion that the weaker point
iterative minimization techniques via the Euler-Lagran
equation are: uncertainty about the global nature of the m
mum obtained; lack of direct control over the integrati
errors~important for constrained fields!, and tedious deriva-
tion for complicated Lagrangians.

III. MINIMIZATION VIA SIMULATED ANNEALING

Minimizing the energy functional directly is a mor
straightforward approach than solving the equations of m
tion, and we propose to use the flexible and easy
implement simulated annealing technique.

A. Metropolis principle

In 1953 Metropoliset al. @15# proposed an algorithm
now called the Metropolis orM (RT)2 algorithm, that can be
used to bring a statistical system into thermal equilibriu
The M (RT)2 is most commonly used to evaluate therm
averageŝF & of a quantityF(C),

^F &5
*F~C!P~C!dC

*P~C!dC
. ~4!

HereP(C) is a probability distribution for configurationsC.
It must satisfyP(C)>0 and*P(C)dC,` in order to be
normalizable. For example,̂F & can stand for the therma
average of our energy functionalE@C# in Eq. ~1!. In fact, the
Metropolis algorithm is only one of the possible sampli
methods for the Monte Carlo evaluation of the integral~see
@16#, Sec. 3.7!.

For the system to reach thermal equilibrium it needs
satisfy the condition of detailed balance,
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K~C2uC1!P~C1!5K~C1uC2!P~C2!. ~5!

Here P(C) is the probability of finding the system in th
configuration, or state,C, and K(C2uC1) is the conditional
probability of moving fromC1 to C2 . The conditional prob-
ability K is usually decomposed as

K~C2uC1!5A~C2uC1!T~C2uC1!, ~6!

where the transition probabilityT(C2uC1) can be chosen to
be any normalized distribution. It is used to select a rand
trial move from C1 to C2 . The complications are kept in
A(C2uC1), which gives the probability of accepting th
move and is the correction to the arbitrarily chos
T(C2uC1). The key element of the algorithm is the evalu
tion of the functionA(C2uC1) by a rejection technique. Thu
the functionT(C2uC1) is sampled, and the resulting config
ration is accepted or rejected depending on the value
A(C2uC1). One usually defines

q~C2uC1!5
T~C1uC2!P~C2!

T~C2uC1!P~C1!
>0 ~7!

and

A~C2uC1!5min„1,q~C2uC1!…. ~8!

If the configurationC2 has a lower energy thanC1 , it is
accepted. Otherwise, it is accepted with the probabi
q(C2uC1). This procedure is repeated a large number
times and eventually the system reaches an equilibrium. H
we define an equilibrium to be the ensemble of states wh
the average of the energy does not show systematic chan

After L steps, equilibrium is established and the syst
fluctuates around̂F &. The thermal average is approximate
by the sum

^F &5
1

N (
i 5L11

L1N

F~Ci !, ~9!

whereCi is a state at thermal equilibrium andN is the num-
ber of iterations over which we compute the average. We
interpret every trial move as representing a unit of quasit
having passed. This cannot be converted to real units of t
but it is possible to average thermodynamic properties o
quasitime when a system is in equilibrium. It is possible
compute the mean of the quantity because the unit of m
surement, which is the number of trial moves, cancels.
trial move is rejected, the old configuration has to be coun
in any averages.

For all the examples to be discussed,P(C)5ebE@C#,
where the temperature is defined byb5(kBT)21. If the tran-
sition probability T(C2uC1) is chosen to be uniform
q(C2uC1)5eb(E@C2#2E@C1#), or

q~CuCnew!5eb~E2Enew!. ~10!

Here,E is the energy of the system in the present configu
tion C andEnew is the energy of the new configurationCnew
that was obtained through a random change in the state o
system~sampled from the distributionT!. If the energy of the
new configurationCnew is lower, the change is accepted.
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the energy is higher, the system accepts this upward
with a transition probabilityq. Thus the system can escap
local minima and achieve thermal equilibrium. In Fig. 1 w
show a flow diagram representing the Metropolis algorith
In this diagram,F denotes the functional being minimized

B. Simulated annealing

In 1982, Kirkpatrick, Gelatt, and Vecchi@17# observed a
deep analogy between annealing of solids and optimiza
or minimization problems. A solid that is sufficiently slowl
cooled down, i.e., is at thermal equilibrium at each tempe
ture, will reach its ground state. If the energy is the fun
tional to be optimized or minimized, the SA scheme sho
find the minimum energy function of this functional accor
ing to a statistical proof by Geman and Geman@18#. One
starts out with a configuration at a high temperature and r
the Metropolis algorithm. The size of change of the fun
tional is proportional to the temperature. Once we ha
reached thermal equilibrium, the temperature is decrea
according to a cooling schedule and the procedure repe
as often as necessary. SA is a conceptually easy
understand minimization technique.

There are several varieties of SA algorithms, each
signed to speed up the minimization of a particular proble
The application to a minimization of a continuous proble
deserves some reflection on the discretization of the der
tives. The most important question is the cooling schedul
sufficiently slow cooling is crucial for the ‘‘statistical proo
of convergence.’’ Quite often, a slow cooling is not need
to reach the global minimum and a faster cooling sched
can be used: this SA version is called simulated quench
For more information on SA, we recommend reading Re
@12,13#, Sec. 10.9. There is no unique way of implementi
the SA scheme and there exists ample opportunity to
prove the code. However, every SA implementation fa
the same issues.

Which initial guess? Unlike the case of the relaxatio
method, the initial configuration is not important as the s
tem should be able to jump out of local minima. However,
initial guess close to the global minimum solution can lead
a reduction of the running time.

What sampling method to use? The changes toC should
be made such that the configuration space is well samp
As the temperature decreases, so should the size of
changes. Usually the choices made are random in the

FIG. 1. The Metropolis algorithm: Scheme for thermal equili
rium.
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figuration space with a Gaussian or Lorentzian distributi
However, since we are dealing with functionals rather th
functions such steps are expensive to compute. Therefore
restrict ourselves to changes at individual gridpoints.

At what initial temperature to start? A high temperature
puts the system in thermal equilibrium quickly, but at t
high temperature the soliton unwinds. Too low a choice
the initial temperature can leave the system in a local m
mum. The best choice is found by trial and error.

When is equilibrium reached? The determination of the
equilibrium position is crucial and a statistical study of t
changes of the system is essential. Equilibrium is reac
when the energy of the system fluctuates but does not s
any systematic trend. However, metastable states have
observed ~like glasses!, where the state of the syste
changes so slowly that one runs the risk of interpreting it
being constant.

What choice of cooling schedule? The temperature shoul
decrease according to a logarithmic rule to assure con
gence to the global minimum~see Ref.@18#!. However, it
takes a long time to reach thermal equilibrium with such
cooling schedule. Often, the cooling is speeded up by
exponential cooling schedule using big temperature
creases or a weaker equilibrium condition.

Discretization of the continuous functionalF? It is im-
portant not to use the central difference, because it does
depend on the function at the center point. However,
problem can be overcome by computing the derivatives m
way between two gridpoints. We discuss this later.

Use of constraints? Constraints are no problem, becau
we use random changes that satisfy the constraints.

IV. SIMULATED ANNEALING IN ONE DIMENSION

We have used the sine-Gordon model for our 1D
implementation, because it is one of the simplest field th
ries exhibiting extended structures and it is exactly solva
~see Ref.@19#!. The sine-Gordon model is also a very go
toy model for solitonic quantum field theories, for the qua
tum mass correction and theS matrix are exactly known.
Further, Coleman@20# has shown that the quantum sin
Gordon model and the massive Thirring model are dua
each other: the bosonic soliton in the sine-Gordon is a
mion in the massive Thirring model. Finally and most im
portantly for this paper, the soliton solution is known exac
and we can compare it to our SA results.

A. The sine-Gordon model

The sine-Gordon model is described by the Lagrang
density

L5 1
2 ]mf]mf2~12cosf!. ~11!

For simplicity, we have set the mass and the coupling to
The Lagrangian is invariant underf→f12pn, nPZ. Here
f(x,t) is an angle in field space, the circleS1. The field has
to go to the vacuum sufficiently fast for the soliton to
localized and of finite energy. Therefore, we can identify
spatial infinity in each direction with one single point an
.
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compactify the one-dimensional spaceR1 to S1. The field
theory of the sine-Gordon model can be described by
map

f~ t !:S1→S1 ~12!

at a given timet. This nontrivial mapping gives us the pos
sibility to partition the space of all possible field configur
tions into equivalence classes having the same topolog
charge or winding number. We can visualize this conc
with a belt. We can trivially close it or we can twist one sid
by 180° and close it or we can antitwist it by 180°, i.e., tw
it by 2180°, and close it. The twist in the belt cannot
undone unless one opens the belt. Topological solitons
be thought of as twisted field configurations. The homoto
group P1(S1)5Z describes the twists in the map. For e
ample, if we twist the belt twice and then antitwist it twic
we get back to an untwisted belt, very much like an anni
lation process in particle physics. The ‘‘twist,’’ i.e., the to
pological charge, is fixed by boundary conditions and co
served.

The corresponding Euler-Lagrange equation for the si
Gordon model is

f̈2f91sinf50. ~13!

One can find the minimal energy solution by solving t
static version using theoretical or numerical methods. T
1-soliton, i.e., minimal energy solution of topological char
1, can be derived from the Bogomolnyi equation~see@19#,
Sec. 2.5!:

f856A2~12cosf!. ~14!

Rewriting this in terms of sin(f/2), integrating, and inverting
the resulting relation, one finds

fst~x!54 arctan@exp~x1x0!#. ~15!

We can derive the solitons with higher charge via a Ba
lund transformation@19#. The static minimal energy solution
satisfies the boundary conditionf(2`)50 and f(`)
52p; the field winds around the field sphereS1 once. The
expression for the energy density is

«~x!54 sin2@fst~x!#. ~16!

The energy goes to zero at spatial infinity and the integra
finite. The total energy is*«(x)dx58 sine-Gordon energy
units. In the next section, we discuss the 1-soliton, Eq.~15!,
and calculate its total energy using the SA scheme.

B. Implementation of simulated annealing

Three aspects of the SA implementation are crucial
successful minimization: the derivatives, the sampli
method, and the cooling schedule with thermal equilibriu

1. Derivatives

The most accurate discretized derivative is the cente
difference. However, this causes problems with derivat
terms as it does not depend on the function at the p
where the energy is being evaluated. This results in a dec
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pling between neighboring points, which gives rise to tw
independent sublattices. The configuration becomes s
since the values jump between the two sublattices. To av
this problem, the energy is computed between the grid po
rather than at the grid points. The value of the function
tween the gridpoints is taken to be the average of the va
at the surrounding points:

f~xi 11/2!5
f~xi !1f~xi 11!

2
, ~17!

]f~xi 11/2!

]x
5

f~xi 11!2f~xi !

dx
. ~18!

2. Sampling

Typically, SA is used to minimize a functionf (x) with x
being a vector. The general form of a change to a confi
ration is

xi→xi1Mi j U j ,

whereMi j is a matrix, andUi is a vector of random number
satisfying an appropriate probability distribution~see Ref.
@21#!. The matrixMi j needs to be chosen such that the co
figuration space is well sampled. Information from the co
ing process can be used to dynamically adjustMi j . We are
interested in minimizing energy functionals on a lattice ofN
gridpoints so ourx vector will have N components. This
makes calculating a new configuration quite an intens
process. To simplify matters we sweep across the grid cha
ing individual points one at a time. The random numbersUi
are taken from a Lorentzian distribution, rather than a Gau
ian distribution. This is a quite common modification to t
original SA algorithm, as the Lorentzian has a longer t
The mean and width of the distribution need to be chosen
that we get a good sampling of configuration space. A n
row distribution will sample only the local neighborhoo
while a wide distribution will spend too much time probin
irrelevant configurations. To achieve a good balance
width is adjusted so that 50% of all the proposed new c
figurations are accepted~this is called the acceptance rate!. If
the mean is taken to be linearly dependent on the temp
ture, then the acceptance rate will remain roughly cons
throughout the cooling. This leaves the constant of prop
tionality to be determined at the start of the cooling proce

3. Cooling schedule and thermal equilibrium

We use an exponential cooling schedule; the tempera
is decreased by a fixed ratio at each cooling step. This
lates Geman and Geman’s statistical guarantee of reac
the minimum solution. Since we do not expect many lo
minima in 1D, this should not be a problem here.

There are several approaches to determining whethe
configuration is in equilibrium. A popular one is based on
sliding average, also known as binning, where the mean
ergy calculated over a number of iterations is monitored
see whether it has converged to a fixed value. We emplo
simpler, related condition that monitors the lowest ene
obtained during a set sequence or chain of iterations unti
new low from one chain to the other is found. Since equil
ky
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rium is by its very nature statistical it is important to kno
how many iterations need to be sampled. A ballpark fig
seems to be 10–15 samples per point on average. We c
the total number of points in the chain to be 10N, whereN is
the number of grid points, and checked empirically that t
was enough.

C. Results of simulated annealing

Specifically, we look here at the sine-Gordon mod
where we need to minimize the following energy function

E@f#5E
x52a

x5a

dx~ 1
2 ] if] if112cosf!. ~19!

We impose a winding or topological charge of 1 by setti
f(2a)50 andf(a)52p. We could use a 2D constraine
field to representS1, i.e., fW 5(f1 ,f2) with fW •fW 51. How-
ever, we opted for an angle representation, because it al
us to use fixed boundaries and the soliton cannot unwind
the 2D constrained coordinates, the winding is a twist in
configuration over the whole grid and a very big fluctuati
induced by a high temperature undoes the twist.

We use different grid sizes. In Figs. 2 and 3, we repres
different aspects of the cooling of a sine-Gordon soliton. W
start out with an initial field configuration, here a straight lin
satisfying the boundary conditions. We then heat up the c
figuration until thermal equilibrium is reached~thick solid

FIG. 2. 1D SA cooling for the sine-Gordon model.

FIG. 3. Typical cooling curve for 1D SA in the sine-Gordo
model.
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line in Fig. 2!. We cool it down by slowly decreasing th
temperature after reaching thermal equilibrium. Finally,
obtain a minimal energy solution close to Eq.~15!.

We set the acceptance rate to 50% and take 10N for the
length of the monitored chain to test thermal equilibrium.
change in these values affects the speed and quality of m
mization. We have rerun the minimization under the sa
setting and find the same energy value. This is a good i
cator that the monitored chain is long enough to obtain th
mal equilibrium. Our box size is 20 sine-Gordon leng
units. The more points we use the closer the result beco
to the exact soliton energy, namely, 8~see Table I!.

To conclude, we find our SA code to be a very conveni
minimization technique in 1D. We have successfully tes
our 1D SA code on many different models. The impleme
tation of the SA search for solitons is faster, for we did n
have to derive the Euler-Lagrange equation.

V. SIMULATED ANNEALING IN TWO DIMENSIONS

We have used the baby Skyrme model@14# for our 2D SA
implementation, because there are exact and numerical s
tions available that we can compare to our SA results. T
baby Skyrme model is used to study some aspects of
quantum Hall effect~see Ref.@6#! and is a convenient (2
11)D toy model for the (311)D nuclear Skyrme mode
~see Ref.@7#!, which requires much more computational r
sources.

A. The baby Skyrme model

The nonlinears model is described by the Lagrangian

L5 1
2 ]mfW •]mfW , ~20!

wherefW is a three-dimensional field vector on the sphereS2,
i.e., fW •fW 51. The field at a timet is a map

f~ t !:S2→S2 ~21!

and the associated homotopy group isP2(S2)5Z. The ex-
istence of the topological charge, i.e., the twisted field c
figuration representing a soliton, is ensured by topology. I
given by

B5
1

8p E d2xemnfW •~]mfW 3]vfW !. ~22!

However, we also need to make sure that the soliton h
stable scale. From Derrick’s theorem@22#, the energy func-
tional corresponding to Eq.~20! is scale invariant. A change
of scale does not change the energy and therefore nume

TABLE I. Energy ~sine-Gordon energy units! versus number of
points used for the sine-Gordon model.

Points Energy

51 8.035
101 8.009
201 8.002
301 8.001
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errors can significantly change the scale of the soliton. I
therefore necessary to add extra terms to stabilize the sol
fixing the scale. If we were to extend the model to
11)D, thes model term would lead to an expanding so
ton, and a balancing term needs to be added to ensure s
ity.

The baby Skyrme model is a modified version of theS2 s
model and the Lagrangian is

L5 1
2 ]mfW •]mfW 2uS@~]mfW •]mfW !2

2~]mfW •]nfW !~]mfW •]nfW !#2uVV~fW !. ~23!

The addition of a potential and a Skyrme term to the L
grangian ensures stable solitonic solutions. The Skyrme t
has its origin in the nuclear Skyrme model and the ba
Skyrme model can therefore be viewed as its (211)D ana-
log. Further, in (211)D, a potential term is necessary in th
baby Skyrme models to ensure stability of Skyrmions; t
term is optional in the (311)D nuclear Skyrme model. On
drawback of the model is that the potential term is free for
to choose. The most common choices areV5(11f3)4 ~the
holomorphic model has an exact one-Skyrmion solution;
Ref. @23#!, V5(11f3) ~a one-vacuum potential studied i
Ref. @24#!, andV5(12f3)(11f3) ~a two-vacua potentia
studied in Ref.@14#!. Except for the first choice, no close
form minimal energy solutions are known. The baby Skyrm
model is a nonintegrable system, and explicit solutions to
resulting differential equations are nearly impossible to fin
Numerical methods are the only way forward.

B. Implementation

Our 2D and 3D SA implementations originate from
more general framework, the study of phase transitions
topological systems at finite temperatures and densities@25#.
The thermodynamic partition function describes a system
a given temperature and can only be evaluated numeric
in the Skyrme models. The evaluation of thermal averag
as discussed before, can be done with Monte Carlo te
niques and the Metropolis principle is one of the possi
sampling techniques. Conveniently, the thermal average
the energy at zero temperature is equivalent to the mini
energy of the energy functional to be minimized.

We start out with the grand canonical partition functio
@26#

Z~b,V,m!5E
all x1,..., xN

E
all p1,..., pN

dnx1dnp1¯dnxN dnpN

3(
i 50

N

exp@b~m i2Ei !#, ~24!

whereEi is the energy of thei th particle system at tempera
tureb5(kBT)21 andV is the integration range. The integra
ranges over all phase space and is 2nN dimensional, wheren
is the number of space dimensions. The thermodynamic
tition function for the baby Skyrme model has the form
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Z~b,V,m!5E )
k

d~fW k•fW k21!d3fkAS 11] ifW k•] ifW k

det~Mk!
D

3exp@2b~Vk2mBk!#. ~25!

HereM is the mass density matrix,V the potential energy
density, andB the topological charge density. The input p
rameters of the thermodynamic partition function are
temperatureb, the volume of the systemV, and the chemica
potentialm. The d function is required due to the constrai
on thefW field.

At zero temperature, the factor in front of the expone
becomes irrelevant and, if we further setm50, the thermo-
dynamic partition function reduces to the integral

Z5E )
k

d~fW k•fW k21!d3f3 exp~2bVk!, ~26!

whereVk is the potential energy density. The implementati
of Z is similar to the implementing ofZ, but Z contains
information that is not necessary for finding minimal ener
solutions The value ofZ is not of interest to us, but thefW
distribution asb→` is. The probability density function tha
is sampled at every pointk when applying the Monte Carlo
technique is the sum over all neighbors ofk,

Pk5expS 2b (
i 51

number of
neighbors

Vi D . ~27!

Examples of Monte Carlo calculations using a grand cano
cal ensemble are given in Refs.@27,28#. A good discussion
of possible errors and how to deal with them is given in R
@28#.

1. Monte Carlo simulation for the baby Skyrme model

We apply the Metropolis principle in the simplest possib
way and select a new vectorfW new(xk) at a grid pointk from
a uniform probability distribution function over the un
sphere, as the integration measure with thed function im-
plies. We choose each of the componentsfa uniformly be-
tween21 and 1. If the sum of the squares of the compone
f1

21f2
21f3

2 is larger than 1 the sample is rejected. All a
cepted vectors are scaled to obtain unit length@16#. The tran-
sition probability of this simple method is

T~C2uC1!

5H 1

~surface area of sphere!
on the unit sphere

0 otherwise,

~28!

and therefore

q~C2uC1!5
P~C2!

P~C1!
, ~29!

where the present vectorfW present(xk)PC1 and the newly se-
lected vectorfW new(xk)PC2 . The quantityq is the new inte-
e

t

i-

f.

ts

grand of the partition function~27! divided by the presen
one. It is easiest to test a trial move for one grid point a
time, although other methods will be discussed. The acc
tance probability defined by Eq.~8! is calculated by

A~C2uC1!5min„1,exp@2b~Vnew2Vpresent!#…. ~30!

A change to the vectorfW at lattice pointk modifies the
potential energy on the grid pointk and its neighbors only
~using a linear approximation for the derivatives!. This is all
the information needed to apply the Metropolis method. T
quantities of interest to measure are the potential energE
and the topological chargeB, which should be conserved an
is a check on the numerics.

A uniform sampling of the distribution has an extreme
low acceptance rate; too many vectors are rejected.
therefore use a biased sampling technique where a new
tor fW new is sampled nearfW present, the vector that it is sup-
posed to replace. We sample vectors in an intrinsic fra
where thez axis corresponds to the present vector. The v
tor

nW int5~n1
int ,n2

int ,n3
int!5~sinu cosf,sinu sinf,cosu!

~31!

gives the components of the new vector in Cartesian coo
nates in the intrinsic frame. The Euler angles that define
rotation from the intrinsic frame to the laboratory frame a
given by

kW lab5~cosb sina,sinb sina,cosa!. ~32!

The anglesa andb are used to rotate the new vectornW int

to the laboratory frame,

nW lab5S n1
lab

n2
lab

n3
lab
D

5S cosa cosb 2sinb sina cosb

cosa sinb cosb sina sinb

2sina 0 cosa
D S n1

int

n2
int

n3
int
D .

~33!

In the previous terminology, the new unit field vector at t
grid point k is fW new(xk)5nW lab, and it is a vector selected
from a particular probability distribution function that is ro
tationally symmetric about the present vectorfW present(xk)
(5kW lab). The vectorsfW new(xk) and fW present(xk) are inserted
into the acceptance probability. The angleu is sampled uni-
formly on @0, A), whereA<p, andf is sampled uniformly
on @0, 2p!. The corresponding transition probability is

T~C2uC1!5H 1

2pA
if 1 2cosu,A

0 otherwise.

~34!

No importance sampling is imposed and the probability d
tribution function is uniform, so that the acceptance rate~30!
can be applied directly. The optimal value ofA, which we
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are free to choose, depends on the particular configura
especially on the topological charge and the temperaturb.
No A dependency was discovered in any ensemble aver
other than the acceptance rate. Therefore, we believe tha
method is reliable and efficient. We allowA to vary auto-
matically to achieve an acceptance rate near 40%. The ch
of A influences the rate at which equilibrium is reache
which is defined as the absence of change in the ave
energy over a large number of steps. At each tempera
the system was required to reach equilibrium before be
cooled further. This ensures that cooling does not occur
quickly.

The choice~34! samples only a portion rather than th
whole of the unit sphere. This is a valid method because
are modeling a continuous system, and therefore the vec
can reach any region in a number of steps. AsA is varied
automatically, the whole unit sphere is sampled for high te
peratures. If the region that is unsampled for low tempe
tures were sampled, the vectors selected there would h
virtually zero probability of being accepted. For generali
we discuss a more rigorous method using importance s
pling in the Appendix. There, new vectors are chosen from
Gaussian~or other! distribution centered around the prese
vector. Importance sampling allows vectors from all over
unit sphere to be selected at any temperature, and this m
be necessary for some systems, especially when calcula
thermal averages. The disadvantage of importance samp
over restricting the transition probability is the increas
amount of computing time.

2. Calculation of field derivatives for a field on S2

We calculate derivatives in a similar way to the 1D imp
mentation, where measurable quantities are calculated in
center of the plaquettes. An illustration of a plaquette
given in Fig. 4, where the field vectors are evaluated at
intersections of the lines and all measurable quantities
calculated at the midpoints. If a field vector is altered, us
the Monte Carlo method as described above, the effect
change has to be calculated on the four surrounding m
points.

All field vectors at each of the four grid points lie on
unit sphere and the average of the four field vectors m
also be of unit length, because the topology requires unita
everywhere. A simple average fails this criterion unless
vectors point in identical directions. We still use the avera
corrected by scaling it to unit length.

This also impacts the calculation of derivatives. For e
ample, the error in taking thex derivatives is minimized if

FIG. 4. A picture of the plaquette, where the fields are evalua
at the intersections of the lines and the measured quantities c
lated at the midpoints3.
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1
2 (b5$b1 ,b2%fb(xn11) and 1

2 (a5$a1 ,a2%fa(xn) are scaled to
unit length before the latter is subtracted from the former
obtain thex derivative. Here$a1 ,a2% are the two grid points
with the coordinates (xn ,ym) and (xn ,ym11), and $b1 ,b2%
are the two grid points with the coordinates (xn11 ,ym) and
(xn11 ,ym11). These vectors are on the corners of t
plaquette~see Fig. 5!. Thus, the derivative is calculated by

]f

]xU
xn11/2

5ScaledS 1

2 (
b5$b1 ,b2%

fb~xn11! D
2ScaledS 1

2 (
a5$a1 ,a2%

fa~xn! D . ~35!

This derivative works very well in practice. At very hig
temperatures the numerics may break down, because th
rivative ~35! is by definition an underestimate. The 3D an
log of this formula is obtained by replacing 1/2 by 1/4 a
summing over the four components ofa and the four com-
ponents ofb.

3. Updating mechanisms

In our 1D simulations, we have randomly selected wh
grid point should be sampled. In our 2D and 3D impleme
tation, we sweep over the grid points sequentially. The n
vectors are stored and the changes to the field are upd
only after a complete sweep over the entire grid to av
unwanted sequential correlations. We have split the grid i
four independent subgrids, each labeled by a different s
bol in Fig. 6. The subgrids are chosen at random and, at e
sweep, only one of the possible four composing vectors
the derivatives and field averages at the midpoints
changed. This avoids the creation of fluctuations betw
neighboring vectors for high acceptance rates, which p
duce an unphysical increase in energy. Unfortunately,

d
u-

FIG. 5. Illustration of the scaling of the center derivative.

FIG. 6. The four subgrids for single point changes, each labe
by a symbol.
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PRE 62 4341SIMULATED ANNEALING FOR TOPOLOGICAL SOLITONS
change of single grid points at a time does not favor coll
tive motion, where a localized energy distribution moves
one direction. Changing regions of grid points at a time h
proved to be more efficient.

We have successfully used a plaquette updating me
nism. For a given plaquette, we sample a vector in
intrinsic frame@see Eq.~31!#. Then this frame is rotated as i
Sec. V B for each of the four vectors on the plaquette se
rately. Figure 4 illustrates a plaquette surrounded by the n
affected midpoints. The total change in the energy densit
all these midpoints is now calculated and all four vectors
accepted or they are all rejected. Again, we have split
grid into four subgrids, each shaded differently in Fig.
However, some midpoints are affected by two or fo
plaquettes from the same subgrid. Therefore, we choose
subgrids randomly rather than sequentially to avoid
wanted correlations.

C. Results and comparison

We have investigated the three different baby Skyr
models mentioned before. To that end, we need to minim
the energy functional

E@fW #5E d2x$ 1
2 ] ifW •] ifW 1uS@~] ifW •] ifW !2

2~] ifW •] jfW !~] ifW •] jfW !#1uVV~fW !%. ~36!

First, we looked at the simplest holomorphic model w
the potentialV5(11f3)4. There exists an explicit one
soliton solution,

W5A4 uV/2uS~x1 iy !, ~37!

where theW field is the stereographic projection offW on the
complex plane, given byW52(f11 if2)(12f3)21. We
chooseuS5uV5 1

2 , where the total energy equals 4p(1
18/3&)'36.2618 Skyrme energy units. Since the solit
profile has a polynomial decay, we need a large lattice. W
a 3503350 grid and lattice spacingh50.05, we obtainE
536.4890 Skyrme energy units andB50.9999. Here, the
energy is slightly higher than the exact solution because
the finite lattice effects. The holomorphic baby Skyrmion h
the slowest decay of any of the models discussed, and th
fore can be seen as the worst case scenario.

We have also looked at the baby Skyrme models with
vacuum, whereV511f3 , and two vacua, whereV51
2f3

2. The parameters for the one-vacuum model have b

FIG. 7. The four subgrids for plaquette changes, each sha
differently.
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fixed to uS5 1
4 and uV50.1 and for the two-vacua touS

50.443 65 anduV50.05 in agreement with existing litera
ture ~see Ref.@14#!. We use an 80380 grid with periodic
boundary conditions and lattice spacingh50.4 Skyrme
length units. The minimal energy solution in the first fo
topological sectors is shown in Figs. 8 and 9. We comp
the energies per charge with the calculations from Ref.@14#
in Table II.

The results for the two-vacua model are the same for b
studies within an accuracy of a few parts in 104. The results
from Ref. @14# were obtained via the shooting method. W
can apply this accurate method, because the Skyrmions
radially symmetric and the minimization reduces to a 1
problem. There is a slight discrepancy in energy when co
paring the one-vacuum model results. The energies in R
@14# were obtained on a 2D lattice using a damped ti
evolution. The energy of the 1-Skyrmion calculated using
shooting method isE519.65 Skyrme energy units. Our S
result agrees well with this value. The inaccuracies in R
@14# arise due to a different derivative approximation, whi

ed

FIG. 8. Baryon density plot with identical vertical scales. W
show the one-vacuum Skyrmions of charge 1~a!, 2 ~b!, 3 ~c!, and 4
~d!. The mesh spacing is 0.4 Skyrme length units, and the total
plotted is 2.431.2 Skyrme length units squared in each figure.

FIG. 9. Baryon density plot with identical vertical scales. W
show the two-vacua Skyrmions of charge 1~a!, 2 ~b!, 3 ~c!, and 4
~d!. The mesh spacing is 0.4 Skyrme length units, and the total
plotted is 2.031.0 Skyrme length units squared in each figure.
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TABLE II. Baby Skyrme models: Comparison of our SA results with Euler-Lagrange results. The e
E is given in Skyrme energy units and the baryon numberB is dimensionless.

Topological
charge

One-vacuum model Two-vacua model

SA Ref. @14# SA Ref. @14#

B E/B E/B B E/B E/B

1 0.999 78 19.6505 19.47 0.999 89 19.6572 19.65
2 1.999 73 18.4452 18.27 1.999 84 17.6530 17.65
3 2.999 62 18.5257 18.34 2.999 83 17.2259 17.22
4 3.999 52 18.4014 18.22 3.999 89 17.0677 17.07
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tends to reduce the energy. The errors due to the fi
boundaries are also greater in Ref.@14#, although this tends
to increase the energy of the 1-Skyrmion. We believe t
periodic boundary conditions, which have been used for
SA result, have the advantage that the tails of the Skyrmi
can spread out further. The finite lattice effects are s
present as Skyrmions could then interact with themse
over the boundaries. For our SA model, a study@10# on the
1-Skyrmion case shows that the grid size used induces
error of the order 0.01%. The error due to not having rela
the system properly is 0.01%. The largest error is due
finite difference effects and has a possible size of 0.1%.
cause of the successful agreement of our SA result for
1-Skyrmion with the result of the shooting method, it is b
lieved that the SA solutions with higher topological char
are also more accurate than the results quoted in Ref.@14#.
Finally, we show an example of the cooling schedule for
3-Skyrmion in Fig. 10.

We studied three different baby Skyrme models. Cha
ing from one potential to the other could not have be
easier. In the case of the iterative techniques, changing
differential equation is in itself conceptually easy, but,
practice, a lot of time is spent on getting the coefficients ri
and checking the derivation. For future research, we int
to use SA to do a systematic check on the multi-Skyrm

FIG. 10. Baryon density plot of identical vertical scales. W
show a SA cooling for the 3-skyrmion in the one-vacuum mod
~a! the starting configuration;~b! system is heated tob5500 and
Skyrmions repel each other because their isospins are initially in
same direction;~c! isospins rotate relative to each other and Sk
mions attract each other;~d! equilibrium has been reached forb
5500; ~e! system is cooled tob55000; ~f! minimal energy solu-
tion atb5`. The mesh spacing is 0.4 Skyrme length units, and
total area plotted is 1.831.6 Skyrme length units squared in ea
figure.
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structure. Specifically, we are interested in the class of
tentials that leads to radially symmetric multi-Skyrmions.

VI. SIMULATED ANNEALING IN THREE DIMENSIONS

We have chosen the nuclear Skyrme model@7# for our 3D
SA implementation, because we believe that SA is a flexi
tool for exploring the multi-Skyrmion structure.

In the 1960s, Skyrme constructed an effective field the
of mesons where the baryons are the topological soliton
the theory. Research by ’t Hooft and Witten has establis
that the nuclear Skyrme model shows important similarit
to the low-energy effective Lagrangian of QCD@29,30#. The
1-Skyrmion can be interpreted as a nucleon with reason
success@31#. The numerical work by Braaten, Townend, an
Carson@32# and Battye and Sutcliffe@33# on the structure of
classical multi-Skyrmions supports the idea that an appro
ate quantization of these minimal energy solutions for
given topological sector could possibly lead to an effect
description of atomic nuclei. However, the calculation
quantum properties of multi-Skyrmions is very difficul
Partly this is due to the fact that these minimal energy so
tions are not radially symmetric and the theory is nonren
malizable. This is rather frustrating, for the claim that t
Skyrme model, descending from a large-N QCD approxima-
tion, models mesons, baryons, and higher nuclei is a v
attractive one. Numerical methods are probably the only w
forward and the SA scheme might be useful in explori
further the multi-Skyrmion structure for different versions
the Skyrme model.

A. The nuclear Skyrme model

The nuclear Skyrme Lagrangian

L5 1
2 ]mfW •]mfW 2 1

4 @~]mfW •]mfW !22~]mfW •]nfW !~]mfW •]nfW !#
~38!

is a straightforward extension of the nonlinears model con-
taining an additional fourth order term called the Skyrm
term. We need to include this extra term to ensure stability
the soliton. The mapping becomes

f~ t !:S3→S3. ~39!

More realistic Lagrangians should probably include high
order correction terms. The SA scheme is especially use
because the extra term can be included trivially.
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B. Implementation

The 3D implementation is very similar to the 2D code a
we will only mention new issues relevant to the 3D case.
a 4D unit sphere, the integration measure is given by

E
unit sphere

dx dy dz dw

5E
u50

2p E
f50

p E
x50

p

sinu sin2 x df du dx

5E
u50

2p E
cosu521

1 E
x/22~1/4!sin~2x!50

p/2

df d cosu

3dS x

2
2

1

4
sin~2x! D

5E
u50

2p E
u521

1 E
v50

p/2

du du dv. ~40!

In order to rotate the new vector from the intrinsic frame
the laboratory frame, the anglex must be evaluated fromv.
The equation

v5
x

2
2

1

4
sin~2x! ~41!

cannot be rewritten in terms ofx, and therefore it must be
solved numerically. The observation that most solutions w
be in the region of smallv due to the importance samplin
implies that a small-x approximation might be useful. Fo
, w
e
g
a
e-
n

ll

small x, v'x3/3. Therefore, the inversion is performed n
merically by tabulatingx uniformly on @0,p# againstv1/3

5@x/22 1
4 sin(2x)#1/3. The x value corresponding to the se

lectedv1/3 is found in this table, and a linear interpolation
applied between the two nearest values ofv1/3 to give a
better approximation tox. Using 1000 precalculated entrie
the error on the whole regionxP@0,p# is then less than
1027. On the regionxP@0,0.1#, where almost the entire
selection ofx lies, the error is less than 10214, which corre-
sponds to the precision of double real numbers. This met
does not create any significant errors and is time consum
No faster method seems to be possible.

As the cosines and sines off, u, and x are known, the
rotation can be performed using a rotation matrix similar
Eq. ~33!. The new choice of vector in the intrinsic frame
given by

nW int5~n1
int ,n2

int ,n3
int ,n4

int!

5~sinx sinu cosf,sinx sinu sinf,sinx cosu,cosx!.

~42!

The z axis in the intrinsic frame coincides withkW lab

5fW present(xk) in the laboratory frame, as in the baby Skyrm
model. The rotation anglesg, a, and b ~in that order! are
defined by

kW lab5~cosb sina sing,sinb sina sing,cosa sing,cosg!.

~43!

The transformationnW int to nW lab is performed using the ma
trix
S n1
lab

n2
lab

n3
lab

n4
lab
D 5S cosa cosb 2sinb sina cosb cosg sina cosb sing

cosa sinb cosb sina sinb cosg sina sinb sing

2sina 0 cosa cosg cosa sing

0 0 2sing cosg

D S n1
int

n2
int

n3
int

n4
int
D . ~44!
ly
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For similar reasons to those already discussed previously
use a restricted transition probability to be uniform ov
@0, A), whereA<p. The method of importance samplin
has also been investigated for the nuclear Skyrme model
is given in the Appendix. The transition probability is ther
fore

T~YuX!5H 1

4pA
if

x

2
2

1

4
sin~2x!,A

0 otherwise.

~45!

The angles are sampled by

v5
x

2
2

1

2
sin~2x!5Aj1 ,

u5cosu52j221,
e
r

nd

f52pj3 , ~46!

wherej1 , j2 , andj3 are three random variables uniform
sampled from 0 to 1. The new vectorfW n(xk)5nW lab is a vector
that has been selected from a uniform probability distribut
centered around the previous vectorfW p(xk)(5kW lab) where
only the anglex between these vectors has an upper lim
Finally, fW n(xk) andfW p(xk) are inserted into Eq.~30! to find
the acceptance rate. As in the baby Skyrme models, the v
of A is automatically chosen to have an acceptance rate
40%. The cooling is also controlled in the same manner
described in 2D.

C. Results and comparison

The 3D implementation of SA is computationally muc
more intensive than the 2D case. The accuracy of our
merical simulations is therefore reduced due to limited
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sources in computation time and memory. The interg
spacing used is 0.12 Skyrme length units and is close to
upper limit where the numerics break down~at the reason-
ably high temperature required to do SA sufficiently fas!.
The maximum grid size that can be used to obtain result
a reasonable time is 80380380. The finite volume cause
an increase of energy for the 1-Skyrmion because it re
itself over the periodic boundary, and therefore induces
error of 1% @10#. The error due to not having relaxed th
system properly is 0.1%. The error due to finite differen
effects has a maximum of 0.3%.

The skyrmions of topological charge 1–4 are shown
Fig. 11. We show an an example of the cooling schedule
the 4-Skyrmion in Fig. 12. These energies per charge
contrasted in Table III with those results obtained by Bat
and Sutcliffe@33#. It is very difficult to compare the results
The 1-Skyrmion solution gives more information for com
parison. It is spherically symmetric and the shooting meth
in the hedgehogAnsatz can be used. The energy of
1-Skyrmion minimized in the 1D SA code isE573.12
Skyrme energy units~in the continuous limit!. We are not
sure if the result for the 1-Skyrmion in Ref.@33# is truly
more accurate or just a coincidence. Their topologi
charge, an indicator for the discretization error, is certai

FIG. 11. Plot of the same constant baryon density surface.
show the first four multi-Skyrmion solutions~from left to right!. All
plots are to the same scale. The mesh spacing of the plotted ob
is 0.12 Skyrme length units.

FIG. 12. Plot of constant baryon density surface. We show a
search of theB54 Skyrmion:~a! the starting configuration of fou
1-Skyrmions;~b! the system heated tob5500 where the Skyrmi-
ons fuse into one;~c! the system in equilibrium atb5500 where
the structure emerges;~d! the minimal energy solution atb5`. All
plots are to the same scale. The mesh spacing of the plotted ob
is 0.1 Skyrme length units.
d
he

in

ls
n

e

r
re
e

d

l
y

less accurate. The finite lattice effect increases the energ
the 1-Skyrmion and therefore the energy obtained should
larger than 73.12 Skyrme energy units. Unfortunately, we
not know which lattice parameters they have used, makin
good comparison impossible. However, we get the sa
minimal energy structure.

VII. CONCLUSION

We have shown that SA is an alternative way of findi
the minimal energy solution in a given topological char
sector. We independently confirmed the validity of the stu
ies using the standard minimization techniques. It is v
hard to objectively compare the different approaches. Ho
ever, we have found SA to be a more convenient and flex
minimization technique. The implementation and fine-tuni
of our SA codes took a fair amount of time due to a lack
prior research in this area. In comparison to other metho
we are confident that future implementations will take
considerably less time. We did not find any significant d
ferences in speed of minimization. The SA codes can
made faster by fine-tuning the cooling parameters. We pr
SA minimization because of its ease of use. Speed consi
ations are irrelevant in 1D and 2D and we can use para
computing in the 3D case.

There are several areas we want to look at next. Firs
all, we will optimize SA by using more sophisticated upda
and cooling mechanisms and by parallelization. We are a
currently investigating the possibility of doing time evolutio
via SA minimization of the action. At the same time, w
intend to look at a wide range of models. We shall inves
gate the multi-Skyrmion structure of several baby Skyr
models. Research is also underway in the use of symm
breaking terms for the nuclear Skyrme model. Moreover,
2D and 3D codes will be used to study phase transitions
the baby and nuclear Skyrme models at finite temperatu
and densities@25#. To conclude, SA is a flexible tool; all we
really need is an energy functional to minimize.
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TABLE III. The nuclear Skyrme model: SA versus publishe
results. The energyE is given in Skyrme energy units and th
baryon numberB is dimensionless.

Topological
charge

SA Ref. @33#

B E/B B E/B

1 1.0015 73.75 0.984 72.96
2 2.0030 70.31 1.972 69.34
3 3.0042 68.52 2.960 67.69
4 4.0048 66.30 3.948 66.09



on

n

b
ly
w

wn

,
,

on
io
e
er
n

e

a
d
t
th

ed
o

red
in

the
is is

-
nal
us
as
ing

y

r
uss-
e it

the

PRE 62 4345SIMULATED ANNEALING FOR TOPOLOGICAL SOLITONS
APPENDIX: IMPORTANCE SAMPLING

For importance sampling, the integral~4! is rewritten as

^F &5E S F~C!P~C!

P̃~C!
D P̃~C!dC. ~A1!

HereP(C) can be normalized without loss of generalizati
~see Ref.@16#! and P̃(C) is a different probability density
function that satisfies

P̃~C!>0, E P̃~C!dC51, ~A2!

and

F~C!P~C!

P̃~C!
,` ~A3!

except on a countable set of points. In this method o
chooses aP̃(C) that minimizes the variance, which is

var$^F &%5E F 2~C!P2~C!

P̃2~C!
dC2^F &2. ~A4!

The measurement of statistical accuracy is given
var$^F &%. More samples reduce the variance. Alternative
the same variance using fewer samples can be achieved
importance sampling. In practice, the closerP̃(C) is to
F(C)P(C), the smaller the variance becomes. It is kno
that if

P̃~C!5
F~C!P~C!

^F &
, ~A5!

then the integral is equal toF with zero variance. However
we need to respect the constraints~A2!, and, even worse
choosing aP̃ requires knowledge of̂F & prior to evaluating
the integral.

1. Baby Skyrme models

The application of importance sampling to the partiti
function~26! is complicated, because the range of integrat
is on a sphere of unit length. Therefore, we need to us
P̃„fW (xk)… that is nonzero only on the unit sphere. Furth
the maximum or most likely area of accepted values depe
on the present vector, and thereforeP̃„fW n(xk)… should not be
restricted to a certain region of the sphere, but should dep
on the present vectorfW p(xk). Looking at the results of a
uniform probability distribution function on the sphere,
Gaussian distribution of the polar angleu seems to be a goo
choice for P̃, whereu50 is in the direction of the presen
vector. This distribution is then rotated around the azimu
f axis and therefore thef distribution is uniform. The
Gaussian-distributedu and the uniformly distributedfW de-
fine the probability for the new vector. This vector is insert
into F(C) as before, and the Metropolis algorithm accepts
rejects this particular choice. The quantityq is given by
e

y
,
ith

n
a

,
ds

nd

s

r

q~C2uC1!5
P~C2!P̃~C1!

P~C1!P̃~C2!
. ~A6!

To implement this method, a Gaussian is chosen cente
along thez axis in the intrinsic frame. This Gaussian is,
terms of thez coordinate,

f̃ 5exp@2A~12cosu!2#5exp@2A~12z!2#. ~A7!

The integral

E
21

1

N exp@2A~12z!2#dz ~A8!

satisfies Eq.~A2!, whereN is a normalization constant andA
is an arbitrary parameter that changes the breadth of
Gaussian and thereby alters the acceptance rate. Th
sampled using the Box-Mu¨ller method, by choosing

z512
1

AA
A2 ln j1u cos~2pj2!u, ~A9!

which is a shifted Gaussian so that the peak is atz5cosu
51. All values ofz,21 are rejected. The azimuth anglef
is sampled uniformly along@0, 2p! by f52pj3 . The ac-
ceptance probability becomes

A~C2uC1!5min„1,exp@2b~nn2np!1A~12z!2#…,
~A10!

using Eqs.~A6! and ~A7!.

2. Nuclear Skyrme model

We do importance sampling by prioritizing smallv values
and selectingu andf with uniform probability. The small-v
region corresponds to the small-x region. Importance sam
pling is used because the newly selected four-dimensio
unit vector should be in the neighborhood of the previo
vector. This new vector is selected in the intrinsic frame,
discussed in Sec. V B, where the previous vector is point
in the x50 direction. A good probability distribution is

f̃ 5e2Av. ~A11!

The quantityv is therefore selected using

v52
1

A
lnH FexpS 2

p

2
AD21Gj111J , ~A12!

where j is a uniform random variable on~0,1!. The other
angles are sampled as in Eq.~46!. The acceptance probabilit
now becomes

A~C2uC1!5min„1,exp@2b~Vn2Vp!1Av#…. ~A13!

A similar probability distribution function can be used fo
the baby Skyrme model and is faster than the given Ga
ian. In practice, importance sampling is not used, becaus
is computationally more time consuming than restricting
transition probability.
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